LANL: Feeding Plants To This Algae Could Fuel Cars

LANL scientist Amanda Barry studies how biofuel-producing algae can be fed various grasses to improve their productivity. Courtesy/LANL

 

LANL News:

 

Researchers at Los Alamos National Laboratory and partner institutions provided today the first published report of algae using raw plants as a carbon energy source.

 

The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae’s potential value as a biofuel. 

          

“Algae hold great potential as a source of renewable fuel due to their ability to produce refinery-compatible diesel and jet fuel precursors,” said Amanda Barry of Los Alamos’s Bioenergy and Biome Sciences group, lead author on the study, out today in the journal Algal Research. “Identifying algae strains that can use plant substrates, such as switchgrass and corn stover (the part of the plant left in a field after harvest) to grow faster and with more lipids suggests that waste plant material can be used to increase the productivity of algae during cultivation for biofuels or bioproducts. Pinpointing the unique enzymes and biochemical pathways algae use to break down complex plant lignocellulose increases our understanding of algal biology, and it opens up new avenues of future designer engineering to improve algal biofuel production strains,” she said.

 

The current study presents the first example of algae degradation and utilization of untreated plant substrate, the putative genetic and molecular mechanisms behind this degradation, and identifies potential glycosyl hydrolases that may be involved in plant deconstruction.

 

Publication: Characterization of plant carbon substrate utilization by Auxenochlorella protothecoides, in Algal Research 34C (2018) pp. 37-48. Authors Brian W. Vogler, Shawn R. Starkenburg, Nilusha Sudasinghe, Jenna Y. Schambach, Joseph A. Rollin, Sivakumar Pattathil, and Amanda N. Barry.

https://www.sciencedirect.com/science/article/pii/S221192641830136X?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc9c30159a5f9aeaa92ffb 

 

Funding: This work was partly supported by a grant from the Laboratory Directed Research and Development Early Career Research Program at Los Alamos National Laboratory and funds provided by the U.S. Department of Energy’s Bioenergy Technologies Office.

 

About Los Alamos National Laboratory (www.lanl.gov

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

 

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Search
LOS ALAMOS

ladailypost.com website support locally by OviNuppi Systems